
• AD—fl62 533 MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTE——ETC FIG 9/2
SPECIFICATION AND PROOF TECHNIQUES FOR SERIALIZERS. (U)
AUG 77 R ATKINSON, C HEWITT N000I ’$—75—C—0522

UNCLASSIFIED AI—M—438 NI.

S~~Di !QS~~

I -~~
- t

a
~~ —

- -

11

I ~~~~~~~~~~~~~~
-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

:-:
~~ ~ T I ~~~ 

-

~~~~~

UNCLASSIFIED
A GE (II7i.n OaS1. EflS.,.d) ()~~~~~~~~~~~ ~~~~ASSI FICAT ION OF ‘THIS P

REPORT DOCUMENTATION PAGE
__

0 FORM
~ . REPORT NUMBER

AIM 438 j 2.
GOVT ACCESSION NO. 3. RCCIPIENT S CATALOG NUMBER

4. TIT LE (.nd SubtitI.) 5. TYPE OF REPORT S PERIOD COVER(o

memorandum~~ r~~~~jfi o n a d proo~~~echniqueS for
/ 6. PERFORM ING ORG. REPORT NUMSER~erializers, - __________________________

S. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~ ~j 
5Rus~~~~

Atkinson
~~~~

Carl
i
Hewitt

/

~ /9. PERFORMING ORGANIZAT I ON NAM E AND ADDRESS 10. PROGRAM ELEMENT. PRO.IECT . TASK
-

Artifi cial Intelligence Laboratory AREA S WORK UNIT NUMBERS

5I~5 Technology Square
Cambridge, Massachusetts 02139

lI~~~~~ II . CONTROLL ING OFFICE NAME AND ADDRESS
Advanced Research Projects Agency

_____________________________l~00 Wilson Blvd
Arflngton, Virginia 22209

)~UM E~~~~F PAGES

14. MONITORING AGENCY NAME 6 AODRESS(iI dlU.r.ni from Confrolilni OUIc.) *5. SECURITY CLASS. (OS this r•pOM,

Off ice of Naval Research UNCLASSIFIED
Information Systems _____________________________
An i ng ton, Virgin Ia 22217 ISa. DEC~~ASSIFICAT ION/DOWN GRADING

SCH DULE

16. DISt RIBUTION STATEMENT (oS thi. R.port,)

‘ ~~~~R3UT1ON 8TAT~~~~T A1Distribution of this document Is un1Imited .~

Appfov.d for Public re~~~~
/ DIJtibUtloW Onlimlt d

>- ~~~~~~~~~~~~
17. DIS’

~~~
j
~~ jTIoN STATEMENT (of IA. .b.t,act .nt•,.d Ire Block 20. U dlSI.,.i’it from Riport)

~~L)

LU 
_ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ __ __ _ _ _ _ _ _ _ _  

D D C~~
’

None ~~~~~~~~~~~ r~~~c~
” T

~ / DEC 27

Is. SUPPLEMENTARY NOTES

~%) /

KEY WORDS (ConUflv. ~~ ~~~~~~~ .Sd. U n.c..om~ ~ id IdPnIIf 7 S7 bIOck nhi5Ib.t) l~9I.6U U L~
specification language ~~i._~ct’ B
seria’I izer I
synchronization
computation
ABSTRACT (ContInua ou r.,.,.. old. IS n•c..aa.~’ nud ld~.nH~~ b~ block npib.r)
This paper presents an implementation mechanism, specification language, and
proof techniques for problems Involving the arbitration of concurrent requests
to shared resources. This mechanism is the sertalizer, which may be describec
as a kind of protect ion mechanism, in that it prevents improper orders of
access to a protected resource. Serlalizers are a generalization and improve
ment of the monitor mechanism of Brinch-Hansen and Hoare.~~~

Sertalizers attempt to systematize and abstract desirable structural features

r~r-, 
FORM

1 JAN 73 1473 EDITION O~ I NOV 41 5 OBSOLETE UNCLASSIFIED
S/N 0102-614- 660 1 I

flCURI?Y CLASS IFICATION OF ThIS PACE (B~e a  bat• lnIm *d)
f ’ I78 12 18 ~~~~~~~~~~ 

~~~~, 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- - .
~~~~

- -
~~~~~-


~r’~ ‘
~~

20. of synchronization control structure into a coherent language construct. They
represent an improvment in the modularity of synchronization over monitors in
several respects. Monitors synchronize requests by providing a pair of operations
for each request type (examples are STARTREAD/ENDREAD and STARTWRITE/ENDWRITE
for the readers-writers problems). Such a pair of operations must be used in
a certain order for the synchronization to work properly, yet nothing In the monitor
construct enforces this use. Serial izers incorporate this structural aspect of
synchronization in a uni fied mechanism to guarantee proper check-in and check-out.
in scheduling access to a protected resource, it is often necessary to wait in a
queue for a certain condition before it continues execution. Monitors require
that a process waiting in a queue will remain dormant forever, unless another
process explicitly signals to the dormant process that it should continue.
Serlalizers improve the modularity of synchrontcation by providing that the
condition for resuming execution must be explicitly stated when a process enters
a queue, making It unnecessary for processes to signal other processes. Each
process determines for itself the conditions required for its further execution.

*4

~TI$
I,oc

~~~~~ ~~~~~~ D
0

JU STI!: . i 3 ~4

py . ~~~~~~~~~~~~~~~~~~~~~

~ab1~ jAv~Js;u1T’ tgOES
Disi ~~~~~~~~~~~~~ SPECIAL

-
~~~~~~~~~~~~~~~

. L3.~

MASSACHUSETTS I NSTITUTE OF TECHNOLOGY

f ARTIFI CIAL INTELL IGENCE LABORATORY

A. I . Memo 438 August 1977

SPEC IFI CATI ON AND PROOF TECHIIIQIJES FOR SERIAL IZERS

Russell Atkinson
Carl Hew tt

This report describes research done at the Artificial Intelligence Laboratory
of the Massachusetts Institute of Technology . Support for the laboratory ’sartificial intelligence research Is provided In part by the Advanced ResearchProjects Agency of the Department of Defense under Office of Naval Research
contract N000lk-75-C-0522.

D D C

DISTRI3UTION 8TAT~
2.1ENT.&i

I Ap},roursd toT public g.I.ac~w I DtstzthutloD OuIImItSd

L ~~~

.. .
~~~

1 SERIALIZE R S

SECTIO N I --- ABSTRACT

This paper presents an implementation mechanism, specification language, and proof techniques
for problems involving the arbitration of concurrent requests to shared resources. This mechanism Is
the seriaIizer~ which may be described as a kind of protection mechanism, In that It prevents Improper
orders of access to a protected resource. Seriallzers are a generalization and improvement of the
monitor mechanism of Brinch-Hansen and Haute.

Serializers attempt to systematize and abstract desirable structural features of synchronization
control structure into a coherent language construct. They represent an Improvement In the modularity
of synchronization over monitors in several respects. Monitors synchronize requests by providing a pair
of operations for each request type (examples are STARTREAD/ENDREAD and
STARTWR ITE/ENDWRITE for the readers-writers problems]. Such a pair of operations must be
used in a certain order for the synchronization to work properly, yet nothing in the monitor construct
enforces this use. Serializers incorporate this structural aspect of synchronization in a unified
mechanism to guarantee proper check-in and check-out In scheduling access to a protected resource, it
is often necessary to wait in a queue for a certain condition before It continues execution. Monitors
require that a process waiting in a queue will remain dormant forever, unless another process explicitly
signals to the dormant process that it should continue. Serializers improve the modularity of
synchronization by providing that the condition for resuming execution must be explicitly stated when a
process enters a queue, making it it unnecessary for processes to signal other processes. Each process
determines for itself the conditions required for its further execution.

The behavior of a serializer is defined axiomatically In terms of causal and Incidental relations
among events using the actor message-passing model of computation. Different versions of the
readers-writers problems are used to Illustrate how the structure of a serlalizer corresponds in a

natural wa y to the structure of the specification of synchronization problems.

In this paper we present specification and proof techniques using partial orders on computational
events for dealing with problems Involving fairness, starvation, and guaranteed concurrency. Our
techniques represent a significant advance over previously developed techniques using global states.

______________



SERIALIZERS 2

SECTION II --- PARALLELISM in PROBLEM SOLVING

Serializers have been developed as a modular arbitration primitive for actor systems to aid
investigating the issues of parallelism In problem solving. Conceptually an actor is an object that has
both procedural and data aspects. The behavior of a primitive actor such as a serializer is defined by
the ordering relationships among the events caused by the actor.

We now feel that parallelism may have a more Important role than previously realized in
explicating the structure of higher level symbolic processing. Until recently It has been widely accepted
that parallelism is not suited for the higher level symbolic processing of problem solving. Most
psychological evidence seems to point to Individual humans as being almost entirely serial In their high
level problem solving.

Recently the development of actor message passing semantics has brought about a shift in our
paradigm for problem solving. Early programs written to be expert in some domain were thought to be
analogous to an individual human expert who was expert in the domain. Most programs were
developed on the basis that there should be a single unified coherent Intelligence directing all aspects of
the problem solving in a serial fashion. The development of the actor mode) of computation has
encouraged us to develop a paradigm based on a society of experts communicating ~~ passingmessages. This switch in paradigm has provided us with a rich source o~’ Ideas f or problem solving
strategies. We are attempting to develop a dialugue 

~YJ! of programming wh ich places its emphasis on
the modular distribution of knowledge and clean means of communication between pieces of knowledge.
Thinking and programming in this new paradigm has in turn caused us to re-evaluate the case for
parallelism. We note that societies often make good use of parallelism for a variety of purposes.

The additional programming burden Imposed by parallelism is the task of arbitrating the
activities of modules running in parallel. By analyzing the structure of problem solvers that attempt to
use parallelism at the highest levels of problem solving, we hope to further explicate the structure of
problem solving. The explication of a modular arbitration primitive In this paper should contribute
toward that aim.

We see a need for the development of language constructs that are at least partially chosen for
their provability. A language feature providing synchronization should be designed to prov ide usable
axioms about the possible orders of events In a program. The language feature should guarantee that
conditions needed to prove properties of programs are explicit in the axioms for the language feature.

Serializers have been designed to facilitate the proof that schedulers implemented using them
satisfy their specifications. The specifications of a protected resource typically Involve stating both
integrity and scheduling constraints . An Integrity specification typically takes the form of a consistency
constraint. A typical examp le of an integrity specification might be that the position and velocity of an
airplane must be recorded I or the same instant of time. A scheduling specification typically takes the
form of a constraint on the time order of certain events. A typical example of a scheduling
specification is that If two requests to write in a data baseare received In a certain order then the first
request received will be honored before the other. We would like to be able to demonstrate how



-

~~~

3 SERIALIZERS

Implementing protected resources using sertallzers makes It easier to prove that they satisfy theirspecifications. In particular, we would like to develop techniques for proving that schedulersimplemented using serializers guarantee a reply to each request received. Guaranteeing that a reply willbe sent for every request received is a stronger and more useful property than merely being free ofdeadly embrace, which Is the scheduling specification most extensively treated In the literature onsynchronization.

.

_ _ _ _ _ _ _ _

~1

SERIAL I ZE R S 4

SECTION II I --- SERIALIZ ERS

111.1 --- Concept of a Seria lizer

In this section we will describe an abstract mechanism called a serializer for guaranteeing the
integrity of a protected resource. The mechanism Is an abstraction and encapsulation of the method
commonly used in operating systems. A detailed analys is of the facilities needed will be used to
motivate our design decisions.

A serializer bears an analogy to the front desk of a hospital In that only one person can check in
or out at a time. The front desk of a hospital serves to schedule the entrance and exit of people in the
hospital. Entering or leaving the hospital Is impossible without checking through the front desk.
Various queues are maintained for people who are waiting. In addition records are maintained of
where people are within the hospital.

Serializers are modular in the sense that they can be constructed to encase the resource to be
protected in such a way that it can only be accessed by passing through the serlalizer. A seriaHzer
should be constructed to surround the protected resource In such a way that It is Imposs ible to
accidently avoid passing through It when uslng~ the protected resource. We shall avoid In this paper
the issues involved with exactly how one guarantees that a sertalizer has sole possession of a resource, or
even if cooperating serializers might share access to a resource. The reader may assume that every
serializer we deal with in this paper has sole access to the encased protected resource.

We can diagram how a serializer can be used to schedule access to a protected resource P as follows:

— -

~

-- .
..

~

----- -.

- ~~ —I,

5 SERIALIZERS

SER I AL I ZER-REQUEST

+ I +
V

ENQUEUE
I I

JOIN-CROWD II V I I
I + I + I

I I OEQUEUE I I V
I I I I I II +-— -- I——— — + + +

I I I I
V I RESOURCE I I

I I I
+ + 1

I LEAVE-CROWD II I I II + I + I
EXIT p

I I V
I I
+ I +

V
Diagram of Serial izer Encasi ng a Protected Resou rce

Each arrow in the above diagram is labeled with the kind of computational event it represents.
The events fall into two disjoint categories that are totally ordered In time: those which
CAIN-POSSESSION and those which RELEASE-POSSESSION of the serializer. Each event In the
former category subsequently causes an event in the latter category to occur. Furthermore after a
CAIN-POSSESSION event has occurred, then another such event will not occur until after the former
has caused a RELEASE-POSSESSION event. A typical sequence of events occurring In the use of the
protected resource P begIns with a SERIALIZER.REQUEST event in which the serlalizer receives a
message M which Is intended for the protected resource P. The request must eventually result in an
ENTRY event which gains possession of the serlalizer. A GUARANTEE request can be used In order
to wait until some condition Is true before proceeding. Such a request releases possession of the
seriallzer. If a reply is received for the GUARANTEE request then It will be called an ESTABLISHED
event because the condition is guaranteed to have been established at the time of the reply. Thus each
ESTABLISHED event regains possession of the serializer at a point In time when the condition is

SERIALIZE RS 6

guaranteed to be true. The above sequence of GUARANTEE and ESTABLISHED events may occur a
number of times in order to sequentially guarantee a number of conditions in succession. When the
proper condition for using a protected resource has been established then possession of the serializer
can be released by a JOIN-CROWD event which records that there Is another process in the crowd
using P. Next the message M Is delivered to the protected resource P in a RESOURCE-REQUEST
event. Eventually the protected resource P may produce a reply R to the request which will be called a
RESOURCE-REPLY event. The RESOURCE-REPLY will eventually result in a LEAVE-CROWD
event which regains possession of the seriallzer and records that the process Is no longer In the crowd
using P. The next event Is an EXIT event, which releases possession and causes a
SERIALIZER-REPLy event in which the message R Is sent as the reply to the original
SERIALIZER -REQIJEST event.

Serializers derive their name from the fact that all of the events that gain and release possession
of the serializer are totally ordered (serial) in time. We assume that every serlalizer Is written such that
an event gaining possession Is always followed by one releasing possession (usually this is trivial to
demonstrate). In the above diagram the interior of the serializer has two wholes , in which a process
may temporarily release possession of the seriahzer. The purpose of the hole entered by ENQUEUE is
to wait for some condition to become true. The purpose of the hole entered by JOIN-CROWD Is to
allow parallelism in the use of protected resources by releasing the serializer to another process. There
may be any number of holes of either variety.

To understand the behavior of serializers, one must understand the ways that possession of a
serializer is gained and released. There are three ways to gain possession of a serializer:

An ENTRY event, which gains possession as a result of a SERIALIZER-REQUEST
event.

An ESTABLISHED event, which regains possession as a result of a GUARANTEE
request with a condition established to be true.

A LEAVE-CROWD event, which regains possession as a result RESOURCE-REPLY
event f rom a protected resource.

There are three ways to release possession of a serlalizer:

A GUARANTEE event, which occurs In order to guarantee that some condition is true
before continuing execution.

A JOIN-CROWD event, which records that a process Is using the protected resource.

An EXIT event, which causes a reply to the original SERIALIZER-REQUEST event.

-—-~~~ -- — .
~~

. .- — - -
~--~~~~~~~

-
~~~~

-
~~
----

~~
---- --— _ _ _



7 SERIA LIZERS

For any given serlallzer and process after an ENTRY event and before the corresponding EXITevent, exactly one of the following two conditions will hold:

The process is in sole possession of the sertalizer (executing in the shaded region of thediagram).

The process - has released possessIon In order to wait for some condition beforeproceeding or to join a crowd of processes executing In some protected resource.



SERIALIZERS

SECT ION IV ---_SERIALIZER CONSTRUCT S
in this section we present the language constructs used in the serializer mechanism. They havebeen developed to facil itate the implementation of the abilities enumerated above. We should note thatwhi le a LISP-lj k~ synta x is used, we regard the choice of syntax as minor.

lvi --- Creation
A serializer is constructed by an expression of the form

(creaLe _sor iajj ze, .
(queueg: ~~~~~~~~~~~~~~~~~~~~~~~~~~~
(crowds: COlI CtIO~~~~~~~~~~~~~~~~~~~ •~~ fj~•~)
(entry: 

~!~L.2L-.$.ri.liz.r))

The q~~ies are used to provide first-in-first-out service to processes waIting for some conditionIn order to continue execution. The crowds are used to record which protected resources are In use.
If an actor constructed by an expression of the form given above Is sent a message M In aSERIA LIZER..REQUEST event then N wi ll event ually be sent to 

~~~~~~~~~~~~ In an ENTRY eventwhich gains possession of the serlalizer. At most one process can be in possession of a serializer at onetime. The queues and crowds for the sertahzer relate to Its Internal wo rkin g and are explained Ingreater detail below .

IV.2 — Queues
Queues are provided to allow a process to wait until some condition is met before proceedingfurt her. Serializers provide an engueue command which has the following synta x to meet this need:

(en queue the_w~it...pu~~~
(guarantee: !~!!... cOnditiOfl)
(then: th•_continuatjon))

A process executing the above command Immediately releases possession of the seriahzer with aENQIJEUE
~~~weil gu.u. to GUA RANTEE lIw~ondilion event. It does not regain possession ~ndcontinue with execution of 

~~~cOntjnustton with an ESTABLISHED the_condition event until all of th.following pre-requlsites hold:

I: All the previous GUARANTEE requests in th ...wiit_qu.,~~ have received replies th atthe condition was ESTABLISHED; I.e. the process Is at the front of the queue.
2: th•_cond,tjon Is true.

—
—

~~~~~~~~~

- ‘1
9 SERIALIZERS

3: A JOIN-CROWD, EXIT , or GUARANTEE event has just occurred releasing
possession of the seria lizer.

Note that all of these pre-requisites must be simultaneously satisfied before execution will continue with
the_continuation.

it may be the case that there is more than one process which satisf ies the above pre-requisites
because each is at the front of a different queue. In this case it is not obvious which process should
gain possession next. We recommend that serializers be constructed so that they satisfy the following
property:

4: There is no other process such that the above three conditions hold.

If all four condi tions hold then for a process, the it is guaranteed to get possession of the
serializer nex t before any further ENTRY or LEAVE-CROWD events occur. In other words.
conceptually at least, the condition that must be guaranteed for further execution is evaluated for each
process that is at the front of a queue every time possession of the serializer is released. If there is only
one whose condi tion Is true then it gets possession next.

The condition in the guarantee: clause of the enqueue command Is potentially any Boolean
expression without side effects. The expression Is evaluated whenever possession of the serializer is
yielded. We have found one particular form of expression to be quite useful, which Is a test for
emptiness of queues or crowds. This Is written as:

Ie mpty: queue1 gueu.2 ...)

Each queue listed must be empty for the expression to be true. The evaluation of an expression of the
above form has no side-effects. It simply calculates the Boolean value for the expression .

We wish the_condition to be guaran teed to be true when execution continues with th._continuation.
This depends on several constraints:

I: The evaluation of the_condition is free of side-effects.

2: The value of The_condition must be unaffected by any execution by any process which does
not possess the sertalizer.

Given these const rain ts, we can say that th._condition must be true when execution resumes with
the_continuation of an en queue command. 

~~~~~~~~~~~~~~~~~ 
. -

~~ ~
. ~i___ _--~~~-~

-
~

S E R I A LIZ ER S 10

IV.3 --- Relaying Messa ges

Within a serializer it is necessary to be able to temporarily release possession of the serializer Inorder to relay the message to the protected resource and then later regain possession with the reply fromthe protected resource. A command of the following form accomplishes this by transmittin g ._m.ssa&.to a_protected_resource:

(relay_to a_prot.cted_ruourc.
(meuage : a_metsa~e)
(thru: a_crowd)
(then_jo: continuation_for_reply))

An entry is made in a_crow~ to record the presence of a process in a..prot.ct.d_r.sourc. and then
possession is yielded. After i_prot.ct.d_ruourc. has replied to a_messa&. and possession of the ser iahzer
has been regained by a LEAVE-CROWD event then the entry is removed from i_crowd and the replyreceived is sent to continuation_for_r.ply. We have observed that In many applications the reply receivedfrom a_protected_resource is immediately returned as the value of the serializer In an EX IT event.
Therefore , we adopt the convention that If the then_jo: clause is omitted from a relay_jo expression.
then an EXIT will be performed with the message received f rom the protected resource.

During the time between the JOIN-CROWD and the LEAVE-CROWD events, the entry is a
member of a_crowd. Thus by inspecting the various crowds of a serlalizer It Is possible to determine
which resources currently have processes executin g within them. Crowds provide a better abstraction
than integer counts for keeping records of which processes are currently executIn g In protected
resources.

- -~ - ~~~~-~~~~~~~~~~~~~~~~ -- - , - ~~~~~~~~~~~ ---_~~~~~~~~~

11 SERIALIZERS

SECTI ON V BEHAVIO RAL PROPERTIES OF SERIAL IZERS
The properties of serializers are stated somewhat informally In this paper since we believe that

serializers aid intuitive reasoning about parallelism. A more rigorous treatment Is possible, but Is
beyond the scope of this paper.

Behavioral properties of serlalizers can be stated In terms of events and relations between events.
We shall use the notation

E1 --> E2
to indicate that the event E1 precedes the event E2. The precedes relationship Is an acyc lic partial order.
The events of processes that do not interact are not ordered.

In the rest of the paper we will require that the protected resource is welt-behaved in the sense
that for each request sent to the resource exactly one reply will be received.

Another requirement we will make is that every process that comes into possession of a serializer
will eventually release possession. The intent is to exclude behaviors where the serializer Is locked up
forever by a process which Is performing an Infinite computation while In possession. We believe that
this condition will usuall y be trivial to satisfy in practice since the code In a serializer simply has to
decide whether to wait for some condition or join some crowd of processes executin g In a protected
resource. This decision must be made as effIciently as possible In order to maximize the thruput of the
serializer. Otherwise the serlalizer can seriously degrade the efficiency of a system by becoming a
bottleneck.

V .1 --- Propert y of Mutual Exclusion

The most fundamental property of a serlalizer is that processes mutually exclude one another
from possession so that at most one process has possession at any given instant . For any given ser lalizer
there is a total ordering in time for all of the ENTRY, GUARANTEE, ESTABLISH ED,
JOIN-CROWD, LEAVE-CROWD, and EXIT events of that serlalizer. A process gains possession of a
serializer starting with an ~NTRY, ESTABLISHED, or LEAVE-CROWD event, and retains possession
until it releases possession with a CTJARANTEE, JOIN-CROWD, or EXIT event. We will use
subscripts to indicate distinct Invocations of a serializer. The property of mutual exclusion of
possession of the serlatizer can be stated in terms of events as follows:

Either the i-th possession precedes the j-th possession

-

~

-- --- - -~~~~~~~--—~~-- -- ~

- — -,-
~

——- .— —
~

----- -—~~~~
.

~~
__.___— —— -

~ --— —.-————.— — - — - - —

.

SERIALIZERS 12

GA IN-POSSESSION S

RELEASE-POSSESSION1 —> CAIN.POSSE$$ION~

V
RELEASE.POSSESSION J

or the j -th possession precedes the I-th.

GAIN-POSSESSJON~

GAIN-POSSESSION1 <-- RELEASE.PO5SE5SION~

RELEASE-POSSESSION1

where a CAIN-POSSESSION1 event is either an ENTRY1, ESTABLISH ED1, or LEAVE CROWD 1even t; and RELEASE-POSSESSION1 Is the next event after CAIN-POSSESSION1 which Is a
GUARANT EE1, JOIN-CROWD1, or EXITi event.

V.2 --- Gaining Poeseseio~
We would like to guarantee that any process that sends a request or reply to a serializer must

eventually gain possession of the serializer. This property Is satisfied by any serlalizer that has no loops
in which possession of the serlallzer is not released in the loop. It is not clear that It Is ever useful to
violate this restriction. All of the serlallzer examples In this paper trivially satisfy this restriction
because they have no loops at all.

If the above restriction Is satisfied then any SERIALIZER.REQUEST or RESOURCE-REPLY
event must eventually result in a GAIN-POSSESSION event More precisely, If there is a
SERIAL IZER.REQUEST in the history of a computation then It is followed by an ENTRY event.
Furthermore if there Is a RkSOURCE-REPLY event in the history of a computation then It is followed
by a LEAVE-CROWD event.

______________ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ _ _ -

13 SERIAL IZERS

V.2,a - - - First Come First Served for Entry

Since ~erializers are designed to implement scheduling of access to protected resources It must be
possible for them to observe the order of arrival of requests to the seriahzers in order to carry out
certain scheduling tasks. Thus we provide that requests for entry into the serlalizer will be served In
the order in which they arrive at the serializer. In terms of events this can be formalized by supposing
that SERIALIZER-REQpEST1 and SERIALIZER-REQUESTj are two events such that such that the
first arrives before the second:

SE R IA LIZER-R EQ.UEST, --> SERIALIZER-REqUEST1
The next event after SERIALIZER.REQUESTi is ENTRY 1 and the nex t event after
SERIALIZER-REQUEST

J is ENTRY J We require that these two events be related as follows:

ENTRY 1 -- ENTRY J

V .2.b --- First Come First Served for Re-Entfy

Similarly it must be possible for a serializer to observe the order of arrival of replies to requests
sent to protected resources. Thus if RESOURCE-REPLY1 precedes RESOURCE.REPLYj so that

RESOURCE-REPLY 1 -- RESOURCE-REPLY1
then we require that

LEAVE-CROWD 1 -- LEAVE-CROWD1

- v .3 --- Prop ertie s of Guaranteed Conditions

V.3.a --- The Guaranteed Condition is True if Execution Continues

Let C be the condition guaranteed in an event of the form

ENQUEUEq CUARANTEEc

which Is caused by executing an expression of the form

(enqueu~ q
(gurzr ont~ n: C)
(then: ...))

If execution of the process continues, then the next event of the process Is of the form
ESTABLISH EDc and C Is true at the Instant of this event.

rip.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ __ _. _ _~~~~_. _._.___ — ,—~~~~~~

SERIALIZERS 14

V .9.1, --- Inter nal Queues are Firs t In First Out

Suppose that q is an internal queue of the seriallzer S and that there are two events such that

ENQjJEUEq~GUARANT EE~1 ~ > ENOjJEUEq GUARANTEE~2
(i.e. such that the former precedes the latter in the total ordering of the serialized and thatESTA BLISHEDc2 is the next event after ENQ,UEUEQ.GUARANTEEC2 Then there is an eventESTABLISHEDc1 which is the next event after ENOjJEtJEq~CUARANTEE~ 1 such that

ESTABLISHEDcI --> ESTABLISHED(~
which says that ENQUEUEq~CUARANTEE~1 was served before ENQ.UEUEq GUARANTEE~2 sinceboth guarantee requests were placed in the same queue.

V .3.c --- Priority for Waiting Processes

Each time possession of a serlalizer is released, waiting processes are given the opportunity tocontinue execution. This property of serlalizers simplifies proofs that a scheduler guarantees replies torequests received and increases the responsiveness of schedulers by allowing waiting processes to proceedas soon as possible. Roughly speaking, If there are any waiting processes “ready to go” when possessionof a seriahzer is released then the next event to gain possession of the serlalizer must be anESTABLISHED event which gives one of those processes possession. In terms of events, a process willbe said to be “ready to go” at the Instant of a RELEASE-POSSESSION event if It is waiting because ofa previous ENQUEUEQ~CUARANTEEC event, but the corresponding ESTABLISHED event has not
yet occurred and the following properties hold:

1: The condition C Is true.

2: The process is at the front of the queue. Therefore all prevIous events that waited
for some condition on Q have already contInued with their condition ESTABLISHED.

The above properties give Internal queues priority over external queues.

_______________ ____________________

15 SERIA LIZER S

SECTION VI RELATIONSHIP TO SEMAPHORES

VI.i --- Mutual Exclusion

One of the most common uses of sema phores Is to implement mutual exclusion of execution In
protected resources. It Is relatively easy to Implement mutual exclusion using a semaphore. The idea is
for each process to perform a P operatIon on the semaphore before using the resource and then to
perform a 1’ operation when finished using the resource. The program mutual_.xclusion_1 given below
can be used to construct systems that Insure that a resource does not receive an y messages whIle still
processing a previous message. Thus processes are guaranteed to mutually exclude each other from
overlapping execution in the protected resource. This simple example is presented to Illustrate more
concretely the concept of encasing a resource In a serializer.

(mutual_exclusion_i =r.sourc.) ;nuuual exclusion of a resource Is enforced by
(let (mutes = (creaie_.binary_senvsphore)) ;consenscting a new binary some pI.ore called mutes
in (E> =a_m.ssag. ;then returning an actor such that whenever it receives a menage

(P mut.x) ;perf arms a P operatIon on mutes
(let (result = (r.sourc. (n .m.sug.)) ;thea sends she mesaag. so ilte resource
in ;aeicl. that after the resul t I. received

(V mut.x) ;a V operatlois Is performed on she semaphore
result))) ,and the result is returned

Semaphores are a very primitive synchronization method which can be used to implemtnt the
facilities needed by modular schedulers. In some ways semaphores are analogous to the goto construct
which can be used to Implement the control structures needed for modular programming. Serializers
abstract the control structure of schedulers such as the simple one presented above. They can be used to
increase the modularity of implementations by making the structure of the ImplementatIon more closely
match the structure of the task to be accomplished. In this way the synthesis of schedulers from
specifications is facilitated because serlalizers provide facilities for directly Implementing common
aspects of specifications for schedulers. Furthermore proofs that implementations satisfy their
specifications is facilitated because the structure of the serializer guarantees many properties of the
Implementation that would otherwise have to be painfully extracted f rom a global analysIs of the
implementation.

The fundamental integrity constraint for mutual exclusion of the use of a resource is that if two
requests SER IAL IZER-REQUEST1 and SERIAL!ZER-REQ~JEST1 are made to the serializer then
either the i-use completely precedes the i-use

R ESOURCE-R EQUEST1

RESOURCE-REPLY 1 --~ RESOURCE-REQU EST1

RESOURCE-REPLY1

SERIALIZERS 16

or the j-use completely precedes the i-use.

RESOURCE-REQUEST1

RESOURCE-REQUEST1 <-- RESOURCE-REPLY1

RESOURCE-REPLY 1

which says that one process must enter and leave the protected resource before the other enters.

(mutual_.xclusion_2 =resourc) ~ ~to enforce mutual exclusion far a res.s rce
(creaee_.,crializer construcl a serializer

(queues: q) ;wish one queue q
(crowds: c) ;ond one crowd c
(entry: ;suels shut wise., entry is g.Aned to else serializer

(E> =a_in.ssago ;wit l. a message
(enqueue q ;ihen wait on q

(guarantee: (empt~ c)) ;for the condition that the crowd c Is empty
(then: ;el,en

~reIay_io resource ;sens to the resource
(message: ..m.ss.g.) ;the message received by zise serialize,
(ehri&: c))))))) ;passing through the crowd c

It is easy to see that mutual_.xcluslon_2 implements the integrity specification given above. The
following invariant is true each time a process gains or releases possession:

((six. c) £ 1)

The only way to enter the resource through the serlalizer is to pass through the crowd c. Furthermore
the crowd is guaranteed to be empty whenever a message is relayed to the resource.

Actuall y mutu .l_.xclus ion_2 Implements a stronger specifIcation: namely that If

S ER IA LIZER-R EQUEST~
--> SERIAL IZER-REQUEST1

then

R ESOURCE-REQUEST1

RESOURCE-REPLy 1 --> RESOURCES-REQUEST1
The proof of this stronger specifIcation Is given below. If we suppose that

— -~~~~~~-~~~~~~~~~~~-~~~~~~~ -- - - . - - I ~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~-~~~~~~ —~~~~~~~~~~~~ -~

—

17 SERIA LIZERS

SER IALIZ ER..R EQUEST1 --> SERIAL IZER.REQJJEST
J

then

SERIALIZE R.REQ.UEST1 --> SERIALLZER..REQUESTJI IV
ENTER 1 I

V V
ENQUEUE~ --> ENTE RJ

ENQUEUE1
follows from mutual exclusion for serlalizers. Therefore

ENQUEUE1

DEQUEUEI ENQIJEUE1

DEQUEUE
J

since queues of a serlalizer are first-In-f irst-out. Since serlalizers are mutually exclusive we know that
DEQUEuE~

JOIN-CROWD1 --> DEQ.UEUE
J

Therefore

JOIN
~CROWD~

LEA VE-CRO WD1 --> DEQUEUEJ
since the prerequisite for DEQ.UEUEJ Is that the crowd must be empty. Now we can read of f thedesired answer by transitivity:

~

r~ ~~~

-

SERIAL IZERS 1$

JOIN-CROWD1

V
RESOURCE-REQUEST1

V
R ESOURCE-REPLy 1

V
LEAV E-CROWD1 —

~ DEOJJEUEJ

V
JOIP4-CROWD1

V
RESOURCE-REQUEST1

One extremel y common specIfication Is that an actor must reply to each request it receives (a
guarantee of service that implies that the actor Is starvation- free and thus f ree of deadlock). For
serializers this is expressed in terms of events by simply requiring that for every
SERIALIZER-REQpEST event there is a corresponding SERIALIZER.REPLY event In the history.
Similarly the resource can be required to reply to requests by specifyIng that for every
RESOURCE-REQUEST event there Is a corresponding RESOURCE-REPLY event In the history. A
serializer constructed using mutuel_.xclusion.2 is guaranteed to reply to requests provIded that the
resource it encases Is guaranteed to reply to requests.

The code for niutual_.xclusion_1 looks slightly shorter than the code for mulua&.mxc$usion...2. but that
is largely due to the extra words that indicate the structure of mutuaL.xc1usIon.~.2. In mutu.l_.xclusion.,..1
the semaphore bookkeeping Is explicit for the message passing to and from the resource. In
mutual_.xclusion .2 the required bookkeeping Is implicit in the structure of the language construct.

- _ _ _ _ _ _ _ _
- - .- - - ..-- .——.--

~~
----- . -

~~~~~~~
- - .  .—-.---..—----- — - — -.,-~~~~-v~.-.---~- - - - - .~~~~~~~~_ ___

19 SERIALIZERS

SECTION VII --- READERS-WRITER S PROBLEMS

Readers-Wr iters Into~ rj ty Specification

A readers-writers seriallzer Is Intended to protect the IntegrIty of a resource by scheduling access
to the resource in such a way that It is impossible for two processes to overlap In their use of the
resource If one of them is a writer. An event In which a message is received by the protected resource is
called a RESOURCE-REQUEST, of which there are two special cases: RESOURCE-READ and
R ESOURCE-WRITE. In response to these requests the protected resource will produce responses which
will be called RESOURCE-REPLY events.

The integrity specification for a readers-writers serializer is that “a write request excludes all other
requests from the resource”. This Integrit y specification can be expressed in event terms as follows: if
SERIAL IZ ER.W RVr E1 and SERIALIZER-REQUEST1 are two requests received by the seria llzer then
either

RESOU RCE-WR ITE1 -- RESOURCE-REPLY1 -->
RESOURCE-REQUESTj -- RESOURCE-REPLYj

or

RESOURCE-R EQUEST. --> RESOURCE-REPLY 1 -->
R ESOURCE-WRI 1fE~ --> RESOURCE-REPLY 1

VII.2 --- Readers-Writ ers Sohedulinp.~ Specifications

Variations of the readers-writers problem derive from the desirability of Imposing stronger
scheduling specifications than simply that the serializer must reply to requests that it receives. Note that
readers do not interfere with one another even if they are executing in parallel in the protectea
resource. Therefore allowing multiple readers into the resource concurrently can increase thruput.
Several variations of scheduling specIfIcations that require more concurrency will be presented below.
In all of these implementations we will keep track of whether there are readers in the resource or there
is a writer in the resource by keeping a separate crowd for the readers and a separate crowd for the
writer (which will never have more than one member).

Below we will present several Implementations of the readers-writers problems in which r..d.rs is
the crowd of readers in the protected resource and writ.r is the crowd of writers in the protected
resource. The followIng invarlants are relevant to understanding all ~I the Implementations to be
presented below:

the size of the writ.r crowd Is never greater than one
she r.ad.r, crowd and the writer crowd are never both isonempty as the same time

— __



r - ____  .- -. - .

SERIALIZERS 20

The fact that all of the above invariants are preserved will be immediately evident from inspection of
the code of all the implementations given below. No complicated chain of reasoning will be required.
This is an example of how propertIes of a scheduler implemented using serializers can be seen with
greater perspicuity than Is possible from Implementations using less structured arbitration primitIves
such as semaphores.

VII.3 --- Writer Excludes Others

Let us introduce no new constraints beyond the primary one of Insisting that a writer has sole
access to the resource. One possible Implementation that would satisfy those constraints Is the
one-at-a-tim. serializer presented above. Another implementation follows that would allow readers to
access the resource concurrently.

In the implementation below we provide that a resource which Is to be scheduled for reading and
writing will receive messages of the form (read (using: direction,)) and (write (using: directions)). The
directions included In these messages can be as complicated as desired up to and including an arbitrary
procedure for carrying out the transaction on the protected resource without sIde effects. Note that this
degree of generality in the directions can complicate verifying that the resource will reply to each request
which it is sent. Nevertheless, In the discussion below we will assume that the resource will always reply
to requests of the form (read (using: directions)) and (sprite (using: directions)).

((writ.r _.xclude_oth.r, =th. r.sourc.) u ;a aerlal,iser ,slileb enforces that writers excludes ethers
;from the resource Is Implemented by constructing

(create _arria lizer ;a socializer which has
(queues: r.ad.rs..q writ.rs..q) 

~two queues called r.ad.rs_q and wr )t .rs_q
(crowd,: readers writer) ;two crowds called r.ad.rs and writer
(entry: ;after entry

(cases ;there are two cases for she message
(z> (read (using: diroctions)) ,recelve a request to read she resource using directions

(enqu cue r.ad.rs_q 
~en queue on the readers queue so

(guarantee: (empty: wrlt.r~) guarantee that there Is no writer in the resource
(then: ;when dequeued,

(relay_to th.jesourc. ;dellver the message so the resource
(message: (read (using: direction,)))
(thru : r.ad.rs))))) ;passlng ehru she readers crowd

(~> (write (using: =dir.ctions)) ;reeelve a request to write In the resource using directions
(en queue writ.rs_q ;enqueue on the wrlt.rs_q so

(guarantee: (empty: readers writer))
;guarantee that there are neither readers nor a writer In the resource

(then: ;svhen dequeuei,
(relay_to tlw ..reaourc. ;d.Uver the message so the resource

(message: (write (us ing: direction,)))
(t hru: writ.r))))))))) ;pasalng tlsru the writer crowd

It is easy to see that the above implementation guarantees that writers will exclude others from
the resource since If there is an element In the wrlt.r crowd then all the queues of the seriallzer are
blocked.

_ _ _ _



‘

~

- ____

21 SERIALIZERS

((us. wrlt.r) � 1)
(if (nonempty: writer) then (empty: readers))

However , the above implementation does not satisfy the requirement that the serializer must always
reply to requests which it receives since nothing forces the readers crowd to eventually become empty. If
the readers crowd does not empty then a writer could be stuck forever in writers...q (this problem has its
roots In the violation of our recommendation that no two processes should be ready to gow In a
serializer at the same time). Therefore the above implementation must be refined or Interpreted in
some way in order to meet the specifications.

V114 Fir st Come First Served

The implementation given below satisfies the specification that the protected resource Is served on
a first come first served basis. In addition, starvation Is not possible with the first_com._first_eerved
serializer and a certain amount of concurrency Is guaranteed. Note that the additional specification
results in an implementation that is simpler than the previous one. The added simplicity is due to the
ability of serializers to have processes waiting In a single queue for different conditions.

((first_come_first_served =the_r.source) ;a first come f irst served s~ rialixer of the resource which
;can be Implemented by constructing

~crcaie_*erjaLj~er ;a serializer which has
(queues: waiti ng_q) ;a queue called the w.iting_q
(crowds: readers writer) ;and two crowds called readers and writer F
(entry: ;after entry

- (cases ;there are two cases for the message
(u> (read (using: =dj rectjons)) ;recelve a request to read the resource using directions

(en queue waiting_q 
~en queue on the waiting queue to

(guarantee: (empty: writsr)) ;guarantee that t here Is no writer in the resour ce
(then: ;when do queued,

(relay_so thej.sourc. ;deUver the message to the resource
(message: (read (using: directions)))
(thru: readers))))) ;passiisg shru the readers crowd

(s> (write (using: =dir.ctions)) ;recelve a request to write in the resource suing directions
(en queue wa it ing_q ;enqueue on she wailing queue so

(guarantee: (empty: readers wr iter))
;guaranlee that there are neither readers nor a writer in the resource

(then: ;uihen dequeued,
(relay_to the..r.sourc. ;deliver she massage so the resource

(message: (write (using: directions)))
(thru: writer))))))))) - ghru the writer crowd

___________________________ ~~~~~~-



SERIALIZER S 22

Vll.4.a •-- Requiring Concurrency in Implementations

In the readers-writers problems there is a basic integrity constraint that the serializer must
maintain, which is to ensure that a writer does not have access to the resource at the same time as any
other requestor. However , a simple one-at-a-time approach can easily guarantee this property. The
more complex versions of the problem attempt to provide readers with concurrent access to the resource
without starving the writers. When we say that some amount of concurrency is guaranteed, we mean
that the specifications for the serlalizer require that certain readers be given the opportunity to access
the resource at the same time.

Note that a serializer cannot guarantee that the requests to a protected resource are actually
processed in parallel, since either the structure of the resource or some externally defined scheduling
policy may prevent actual parallelism. We say that readers R1 and R1 are concurrent readers If

JOIN-CROWD1 --> LEA VE-CROWD~
and

JOlN-CROWD~ --> LEAVE- CROWD1

The specifications for the first-come-fIrst-serve serlalizer include a requirement for concurrency.
We can informally express this requirement as saying that whenever one reader’s entry Into the
seriahzer (an ENTRY event) immediately precedes another reader’s entry, and the second reader enters
the serializer before the first reader enters the resource (a JOIN-CROWD event), then these two readers
must concurre ntly be in the resou rce. We can also give a more formal specIfication In terms of events:

If R1 and are r.sders such that
ENT RY 1 ~ -> ENTRY J --> JOIN-CROWD 1

and
there is no r.quistor Xk (a read.r or writer) such that

ENTRY 1 --> ENTRY k --> ENTRY J
then R and R~ must be concurrent readers, i.e.

JOIN-CROWD, ~ -> LEAVE-CROWD1and
JOIN-CROWDS -- LEAVE-CROWD~

Note that the above requirement would be the same If we required that the requestor Xk be a wr iter ,
although the proof would be somewhat more dIffIcult.

--

~

- - ---

~

- -

~

- -  

.

~~~~~~~~~~
-

23 SERIALIZERS

V ll.4.b --- Proof of Guaranteed Concurrency

A proof that the first_com._first..served serializer shown above satisfies the given concurrency
requirement proceeds by assuming the existence of two readers with the given relationship, then
showing that they must be concurrent readers. Since we have

- ENTRY 1 --> ENTRY1 --> JOIN-CROWD,

we know - that the reader R1 must be in the waiting..q when the reader Rj gains possession of the
serializer. R~ must be enqueued directly behind R1, since by our assumptions there are no Intervening
entries to put other requestors in the waiting..q. Therefore when reader R1 does get into the resource
through a JOIN-CROWD event (thereby releasing possession of the serializer), then the requestor at the
head of the waiting .q must be Rj and the condition of (empty: writers) must be true. We then appeal to
the priority which serializers give to processes waiting in interil queues of the serializer.

JOIN.CROWD1 --> LEAVE-CROWD 1

Since we know that JOIN-CROWD, --> JOIN-CROWDJ. and JOIN-CROWDj --> LEAVE-CROWD S.we conclude that JOIN-CROWD1 --> LEAVE-CROWD j which completes the proof that R1 and Rj are
concurrent readers .

VII.5 --- Readers Priori ty

The following serializer forces readers into the resource concurrently. However, we need to guard
against starvation. Our approach is to allow all waiting readers to enter the resource, then to designate
the writer which has been waiting as the new pr iv ileged writer, and keep further readers from enterIng
the resource until the privileged writer has relayed its message to the resource. After the privileged
writer has been served, then all readers which have been waiting for that writer to finish are allowed to
enter the resource, and a new privileged writer Is chosen. A reader may not deliver a message to the
resource while there is a privileged writer, or there Is a writer in the resource. A writer may not enter
the resource unless it is a privileged writer, and there are neither readers nor a writer In the resource.

_

_____________ - - .-- ~~~~—~- --.~ -

SERIALIZERS 24

.

((read_concurrently =the_r.source) a ;a aerlailger which enforce. concurrency among readers of
,ihe resource is Implemented by constructIng

(rreate.jierializer ;a serlallzer which has
(queues: readers _q w riters _q) ;two queues called readers_q and wr lters _q
(crowds: readers writ er) ;two crowds called readers and writer
(entry: ;after entry

(cases ;tl.ere are two cases for she message
(a> (read (using: dir.ctions)) ~rece1v. a request to r.a.d the resource using directions

(en queue read.rs_q ieaqueue on the readers queue to
(guarantee: (empty: writer)) ;g’uaraistee that the,. are no writers in the resource
(then: ;when dequeeed.

(relay_ io the_resource ;dellv.r the meuag. so she rea.sree
(message: (read (using: directions)))
(thru : readers))))) ;passlng- thru the readers crowd

(a> (wthe (using: =dir.ctions)) ;receive a request to san te In the resource using directions
(en queue writers_q ;enqueue on she writers queue to

(guarantee: (empty: read.rs_q wr iter))
;guaraistee that readers_q, aisd writer crowd are all empty

(then: ;when dequeued,
(enqu”ue readers_q ;enqueue on read.ts _q to

(guarantee: (empty: readers w riter))
;guarantee that there are neither readers nor a writer in the resource

(then: ;when do queued,
(relay_to the_resource ;deliver the message so the resource

(message: (write (using: directions)))
(thru: wr iter)))))))))))

~pasaing tkru she writer crowd

The above implementation is a little more complicated than the prev ious one. However , It is not
difficult to show that writers exclude others using the technique used for the previous Implementation
since the following Invariants are maintained:

((sia. writer) £ 1)
(If (nonempsy: writer) then (empty: readers))

In order to show that neither readers or wr iters can possible starve, consider the follow ing “traff ic
diagram ” for the queues and crowds of the serializer:

- - —________________

25 SERIALIZERS

Enter i ng readers Enter i ng wr iters
I I
I I
I V

wrltere ._q
I I
I I
+ + +_-.----__--_---—+

I I
I (empty: reader s_q wr iter)

I I
V V

reader s_q
I I

(empty: readers) (empty: reader s wr iter)
I I

+ + + +
I I
I I
I I
I I

V V
reader s wr iter

Traffic Diagram for Queues and Crowds of rea&concurr.nt ly

The Idea of the proof Is to f i rst show that the re.ders _q must eventuall y empty, then to show that any
writer in the writers_q must eventually migrate to the re.dens_q. These two conditions ensure that every
read or write request to the serializer is eventually satisfied.

V115.a --- Proof that the Readers Queue Must Empty

If there is a privileged writer In the r..d.rs_q, theh there is only one such writer, and it must be
at the head of the queue. A writer can only enter the r•aders_q after It has been dequeued from the
writ.rs _q, and the guarantee of every writer exiting the wrlt.rsj is that the r..der,4 Is empty. Thus.
not only is It true that there may be only one writer In the r.aders .q, the writer must also be at the head
of the queue if It is there.

Processes may only enter the readers crowd or the writer crowd by first exiting the re.ders_q. We
have assumed that the_resource is correct In that every message sent to the resource will eventua lly
produce a single reply. Therefore, If a writer is at the head of the readers_q, It is guaranteed that no

- _ _ _ _ _ _ _ _ _ -~~- ~ .- -~~--~~~ ~~~~~
- - -~~- -. -~~-~~~

-~~~~ ---~~----~~~~~~~~ . -----
-

~~~ 

— -

S E R I A LI Z E R S  26

messages will be sent to the_resourc, from the serializer until both the readers crowd and the wr it.rcrowd are empty.

By a similar argument, if a reader Is at the head of the read.rs _q, the writer crowd musteventually empty, which implies that a reader at the head of the riaders_q must eventually exit thequeue. Once a single reader is dequeued from the r.aders_q all readers In the r..ders_q In front of awriter must be dequeued. For any reader In the readers_q an event of the form
ESTABLISHED read.rs q must be followed by an event of the form JOINCROWDr.~~ r For everysuch JOIN-CROW D event, the serializer is released, and if the r..ders_q has a reader at its head , thatreader must be dequeued, since the re.der_q is the only Internal queue with its guara nteed condition true(the writer ~rowd remains empty).

Thus, we have shown that all readers must exIt the readera_q If they occur before a writer in thatqueue or if there is no writer in that queue. Further, If a writer Is at the head of the readers .q then Italso must exit the re.ders_q. Once a writer exits the r.adera_q there may be no additional writers addedto that queue until it is empty. Therefore, the r.ad.rs_q must empty.

Vll.5.b --- Proof That No Process In the writ•rs_q Can Starve

The idea behind this proof Is simple. Any writer in the writers_q Is waiting for both the writercrowd and the read.rs_q must empty. By our assumption about the resource there must be aRESOURCE-REpLy message for any writer, so the writer crowd must empty. We have just provedabove that the readers_q must empty. Therefore the process at the head of the writ.rs_q musteventually be dequeued, which Is sufficient to show that no process In the wrlters_q can starve.

VU 5.c --- Requiring Concurrency for Reader’s Priority

The readers-priority seriahzer is intended to give more thruput to readers at the expense ofwr iters, while still guaranteeing that each write request will receive a reply. Our informal requirementis whenever one reader’s entry Into the serializer follows another reader’s entry (regardless ofintervening seriahzer entries), and the second reader enters the serlalizer before the first reader entersthe resource, then the two readers are concurrent wIthin the resource. In terms of events, thisrequirement can be expressed as:

If R~ and are r.aders such that

E N T R Y 1 -~~ > ENTRY J --~ JOIN-CROWD 1
then R, and R. must be concurrent readers ic

JOlN.CROWD~ -‘) LEAVE-CR OWD~and
JOIN-CROWD1 --> LEAVE-CROWD 1



27 SERIALIZERS

Note that the above requirement Is stronger than the concurrency requirement given for
first_come_first_served.

All readers that have entered the serializer and not yet In the resource are In the read.rs_q, and
the only writer that can be En the re.dere_q must be at the head of the queue. We have previously
shown that once one reader can leave the readers_q then all must leave the r.aders_q and enter the
resource. We note that by the axiom of giving internal queues prIority over external queues all readers
in the r.aders_q must enter the resource before any reply f rom the resource will enter the serlallzer
(through a LEAVE-CROWD event). This completes the proof.

- ~~~~~~~ ZZ ~~~~~~~~~~ .. 
- .

~ tIIb_   ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~.



SERIAL IZERS 28

SECTI O N VIII --- ANALYSIS of SERIAL IZER S

V 111.1 --- Comparigon with Monitor s

Serializers are generalizations of the usecretaryN concept which was conceived by Dljkstra and
later developed into “monitors by Brinch-Hansen, and Hoare. The purpose of serializers Is to schedule
access to shared resources in order to protect their integrity. Roughly speaking, serializers are analogous
to monitors in the same way that actors are analogous to SIMULA-67 classes. A seria hzer Is an actor
that will allow only one process to have possession at a time whereas a monitor Is a SIMULA-67 class
that will allow only one process to be executing Inside It at a time. A general principle of ef f icient
operation that is applicable to both serlalizers and monitors Is to try to keep the serializer [monitor~unlocked as much of the time as possible to keep It from being a bottleneck in the operation of a larger
system.

We believe that serializers are easier to write and verify In a modular fashion than monitors.
The correctness of a serializer Is independent of the way in which it is used. It is more difficult to
verif y the correctness of a monitor since the ordering of monitor operations and access to the protected
resource is dependent on tke programs using the monitor. Serializers support modular programming
better than monitors because sertalizers can be sensibly nested inside one another whereas usually it is
unprofitable to nest one monitor inside another because the outer monitor will be tied up while the
inner one is in use. A further advantage for serializers is that use of a protected resource appears
identical to the use of the unprotected resource in a program that uses the resource.

Using serializers the condition associated with an enquet&e command is explicitly stated in the code
of the implementation whereas the conditions used In the WAIT statement in a monitor are syntactic
constructs which do not explicitly state what condition must be guaranteed in order to proceed. A
process which needs to wait for some condition to be guaranteed before It proceeds explicitly states the
condition in the serializer. In our experience this feature lessens the number of internal queues and
tends to simplify program proofs.

Another difference is the use of crowds rather than counters to keep track of processes that have
been allowed to access the encapsulated resource. While there Is an additional cost associated with such
accounting, we believe that the benefits will make the use of crowds a decided advantage. It Is possible
to examine the crowds to determine which processes are currently accessing which resources. We expect
that this will have significant impact on debugging programs that use parallel processes. Furthermore.
If same process must be terminated externally, then the resources It is accessing can be reclaimed in a
modular fashion.

Axioms about monitors and implementation of monitors are both made more difficult by the
necessity of having an Nurgent queueTM. Proofs of programs using the SIGNAL statement are made
more complicated by the necessity of considering the possible effects of processes emerging from the
urgent queue. Hoare states in his paper on monitors that he considers it to be good practice to exit a
monitor immediately after a SIGNAL statement. We consider it to be a practice worthy of enforcement.



- 
_ _ _ _ _ _

29 SERIALIZERS

All internal queues in a serializer are explicit, and explicit signals do not occur. Rather, the conditIonsfor emerging from a queue are explicitly listed at the point of enqueueing.

I

-—-~~~~~~~ 
4

_ _  
__i~_ _~~~ ~~~~- - -

~~~~~~~~~~~~~~~~ - _


- -~— _
~ ~~

SERIALIZERS 30
-

SECT ION IX --- MORE GENERAL 8ERIALIZEES
Serializers need to be generalized in several ways in order to be a general purposesynchronization mechanism.

Thus far in this paper we have restricted our attention to seriallzers which use first-In f irst-outqueues as the mechanism for scheduling the release of processes waiting for some condition. It Isnecessary to generalize this mechanism in order to conveniently solve certain scheduling problems. Forexample Hoare has used priority queues to solve the disk head scheduling problem. Below we presentan implementation of a virtual disk which efficiently schedules disk accesses to a real physical disk .The operations on the virtual disk are exactly the same as the ones defined on the physical disk. Theimplementation given below uses an algorithm similar to one used by Home In an Ivnplemenution usingmonitors. However , it will be possible to prove that our Implementation using serlahzers alwaysperforms all disk operations which are requested. It Is not possible to prove this property for theimplementation using monitors because a process might request the disk and then never release It.

_
~~~~~~~—

- - - -
~~~~~
—-

-

31 SERIALIZERS

((virtual _disk ~phys ical_disk) a ;a virtual disk behaves like. phys ical disk with opslniixed bead motion
(let ;let

(current_position initially 0) ;the current position inItialized to 0
(curr ent _dir.ction initially up) ;the current direction of motion is initially up

then
(create ._~,orj alj xer ;create a serializer with

(pri ority_queues: up_queue down_queue) ;t wo priorit y queues
(crowds: disk_us.rs) ;one crowd
(entry ;af ter gaining possession

(a> (disk_request (operation: uop) (track: utrack_num))
;rece ive disk request with specified opera tion and track number

(let ;define the procedures wait _up and wait _down as follows
((wait_up) a ;the p rocedure wait_up is defined as follows

(enqu.ue up_qu.u. (pr iority: track.nu mb.r)
;enqueue in the up queue wit?. p riori ty given by the track number

(guarantee: - ;to guarantee that
(and (.mpty: disk_us.rs) ;no one Is using the physical disk

(or (empty: down_qu.u) ;and that either the down queue is empty
(curr.nt_direction up)))) ;or an upsweep is in progress

(then: (curr.nt ..position e track_number) ;shen update the position
(current_dir.ction ~- up)
(relay_to physical_disk irelay the request to the physical disk

(message: (disk_request (operation op) (track: track_num))
(thru: disk _users)))))) ;passing thru the disk users crowd

((wait _down) a ;the procedure w l t _down is defined as follows
(en queue down_qu.u. ;on queue I.. the down qu.u.

(priorit y : (number _of_tracks - track_number))
(guarantee:

(and (.mpty: disk_us.re) (or (empty: up.qu.u.) (current_direction down))))
(then: (curr.nt.position e track_number)

(current-direction ‘- down)
(relay_to physical_disk

(message: (r.qu.st (operations op) (tracks track.jium)))
(thru: disk_users)))))

then
(rules tr.ck_numb.r ;if the track number is

(a> (> curr.nL.position) (wait_up))
Jgr eater than the current p osition then wait in she up queue

(a current _position ~else if the track nunsb.r is the same as the current position
(rules current _direction ;then if the current direction

(a> up (wait _down)) is up then wait In the down queue
(s> down (wait_up)))) ;else wait 1. ii.. up queue

(~> (< cur rent..p~~~ion) (walt_down)))))))))
;els. If the track number is less than the current positio n then wait In sh. down queue

—

SERIALIZER S 32

The proof that the above implementation always performs disk operations which are requested isaccomplished by showing that the disk head sweeps the disk In both the upward and the downw arddirection servicing all requests for the tracks which ft passes over. There are two cases to the proof:
Case I: One of the queues Is empty. This means that any requests In the other queue areserved in order of smallest priority number. Aft of the requests will be served becauseany new entries in the nonempty queue must have higher priorIty numbers than thelowest priority number already In the queue. The priority numbers are bounded aboveby the number of disk tracks. Since the Internal queues of a serializer have absolutepriority for next possession of the serlalizer over external requests, it follows that onlyfinitely many new requests can enter a queue during each physical disk operation.Therefore If one of the queues remains empty then the othe r will eventuall y empty.

Case 2: Both the up_queue and the down_queue are nonempty. The queue to be served isdetermined by the current_direction. The argument used in Case 1 can be used to showthat if current_direction Is up then It will remain up until up_queue has emptied andcurrent_direction will then be changed to down. An analogous result to the previousstatement holds with “up” replaced by “down”.

i i

~
— -

~~

~
-
~

-

33 SERIALIZERS

SECTION X FUTURE WORK
The simple specification that “starvation Is prohibited” Is common to almost all synchronIzationspecifications. Yet serializers at present make no such guarantee. They do make it easier to prove thatan Implementation using a serlalizer is free of the danger of starvation by facilItatIn g the proof thatthe serializer alwa ys replies to requests which It receives. We feel that research should continu e tosea rc h for mechanis ms that provide effective guarantees of suc h propertIes, yet also provide sufficientgenerality to cope with a wide range of problems.

Serializers have potential for use In robust systems In that more Information Is available for errorrecovery. The additional Information is useful for implementing debugging features, deadlockdetection, and gracefully backing processes out of protected resources.

- -

-- - - -~~~~~~~~~~~ -~~~~—

-V
- —-

~~ - - --_____________________

SERIA L I Z E RS 34

SECTI ON XI --- CONCL USIONS
In this paper we have introduced a modular arbitration primitive called a serlal izer whic h is ageneralizauon and improvement of the monitor construct previously developed by Brinch-Hans en andHoare. Serializers aid in the synthesis of modu ar synchronizers because their structure corresponds ina natura l way to t yp ical specifications for useful synchronizers. The structure imposed by usingsersa lt zer s provides important guarantees that aid In proving that the Implementation meets itsspecifications.

The specifications for a serializer Include Integrity specifications relatIng the order of access tothe type of access, and scheduling specifications to ensure that differing types of access occur In theproper order. Part of this ordering specification included a specification requiring that certa inrequescors must be given the opportunity to use the resource concurrently. In the readers-writersserializer, we gave the integrity specIfications that readers and writers were mutually exclusive Inaccessing the resource, and that at most one writer could access the resource at a time. Our differen tsolutions to the readers-writers problem resulted from different scheduling specifications.
We have attempted to explicitly introduce facilities Into serializers that directly correspond tosynchronization specifications. The constraint that the resource is not being accessed by either readersor writers when a wr iter enters is explicit In the code of our Implementations, as Is the requirement that -no writers are accessing the resource when a reader enters. Serializers provide that the condi tion for awaiting process to proceed is explicitly stated. In this way integrity specifications can be directlyexpressed in the language. Scheduling specifications are more complIcated. We have been able to use aspecification language based on partial orders among events to good effect to express schedulingspecificat ions. Furthermore , the str ucture of the serlalizers has enabled us to give sImple intu itIveproofs that various scheduling spedfications are satisfied by Implementations that use seriallzers.

- -

35 SERIALIZERS

SECTI ON XII --~~~ ACKNOWLED GEMENTS
This paper builds on the work of Irene Greif who developed behavioral specifications for all ofthe versions of the readers-writers problems given in this paper. Conversations with Ole-Johan Dahi.E. W . Dijks tra. Tony Hoare, James H. Morris, and John Reynolds have helped us to crystallize ourideas on these issues. Tony Hoare and Mark Laventhal made several useful suggest ions that havematerially improved the content of this paper. We would further like to thank the referees for theircomments and suggestions.

The concept of a serializer which we have developed over the last year owes a tremendousintellectual debt to the monitors developed by Brinch -Hansen and Hoare. We have attem pted toconstructively build op their work to develop better structured arbitration primitive for actor systems.The development of serializers would not have been possible If monitors had not been previouslydeveloped. Brinch-Hansen has developed the programming language Concurrent Pascal whichincludes monitors. He has used the language in the design and Implementation of an extremelymodular single-user operating system called Solo. Dave Bustard and Tony Hoare at the Queen’sUniversit y of Belfast have participated In the development of the programming language ParallelProgramming Pascal which Includes a mechanism called an envelope, w hich is related to our seri allzermechanism.

A very preliminary version of this paper was presented at the ACM SIGCOMM-SIGOPSInterface Worksho p on Interprocess Communication In March 1975. In December 1975 this paper wasextensively revised to reflect Improvements In serializers that were achieved in the PLASMAimplementation meetings that fall in which Russ Atkinson, Mike Frellmg, Carl Hewitt , Kenneth Kahn.Henry Lieberman, Marilyn McLennan, Ronald Pankiewicz, Brian Smith, and Aki Yonezawa wereactive participants. These meetings resulted In substantial improvements In our understanding ofmodular arbitration mechanisms. Building on the work of Irene Greif , Aki Yonezawa has developed
improved notations for expressing contracts for the Implementations in this paper.

-

~

-—--—--

~

SERIALIZ ERS 36

SECTION XIII --- BIBLIOG RAPHY

Brinch Hansen, P. “The Programming Language Concurrent Pascal” IEEE Transactions on
Software Engineering. June, 1975. pp 199-207.

Brinch Hansen, P. “The Solo Operati ng System” Software-Pra ctice and Experience. AprIl -June
1976. pp. 141-205.

Bustard, D. W. “Parallel Programming Pascal (PPP)” Version I. Dept. of Computer Science.
Queen’s University of Belfast. November 1975.

Dijkst ra , E. W. “Hiera rchica l Orderin g of Sequential Processes ” Acta Informat lca. 1971.

Goodman , N. Coord inatIon of Parallel Processes In the Actor Model of Computation .
Laboratory of Computer Science TR 17$. June, 1976.

Greif, I. “Semantics of Communicating Parallel Processes” MAC Technical Report TR-154.
September 1975.

Creif, I. and Hewitt, C. “Actor Semantics of PLANNER-fl” Proceedings of ACM
SIGPLAN-SIGACT Confer ence. Palo Alto, California. January, 1975.

Hansen, P.B. “Operating System Principles” Prentice-Hall. 1973.

Hewitt , C., Bishop P., and Steiger, R. “A Universal Modular Actor Formalism for ArtIficial
Intelligence” IJCAI-73. Stanford, Calif. Aug, 197$. pp. 235-245.

Hewitt, C. and Smith, B. “Towards a Programming Apprentice” IEEE TransactIons on Software
Engineering. SE-I, I. March 1975. pp. 26-45.

Hewitt, C. “Protection and Synchronization in Actor Systems” ACM SIGCOMM-SIGOPS
Interface Workahop on Interprocess CommunicatIon. March 24-25, 1975. Santa Monica,
Calif. -

Hoare, C. A. R. “Monitors: An Operating System Structuring Concept” CACM. October, $975.

Hoare, C. A. R. “L anguage Hiera rchies and Interfaces” Lecture Notes in Computer Science No.
46. Springer, 1976. pp 242-265.

Howard , J . H. “ Provin g Monitors ” CACM. May, 1976. pp 273-278.

